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Abstract

Gene expression profiling holds great potential as a new approach to histological diagnosis and precision medicine of
cancers of unknown primary (CUP). Batch effects and different data types greatly decrease the predictive performance of
biomarker-based algorithms, and few methods have been widely applied to identify tissue origin of CUP up to now. To
address this problem and assist in more precise diagnosis, we have developed a gene expression rank-based majority vote
algorithm for tissue origin diagnosis of CUP (TOD-CUP) of most common cancer types. Based on massive tissue-specific
RNA-seq data sets (10 553) found in The Cancer Genome Atlas (TCGA), 538 feature genes (biomarkers) were selected based
on their gene expression ranks and used to predict tissue types. The top scoring pairs (TSPs) classifier of the tumor type was
optimized by the TCGA training samples. To test the prediction accuracy of our TOD-CUP algorithm, we analyzed (1) two
microarray data sets (1029 Agilent and 2277 Affymetrix/Illumina chips) and found 91% and 94% prediction accuracy,
respectively, (2) RNA-seq data from five cancer types derived from 141 public metastatic cancer tumor samples and achieved
94% accuracy and (3) a total of 25 clinical cancer samples (including 14 metastatic cancer samples) were able to classify
24/25 samples correctly (96.0% accuracy). Taken together, the TOD-CUP algorithm provides a powerful and robust means to
accurately identify the tissue origin of 24 cancer types across different data platforms. To make the TOD-CUP algorithm
easily accessible for clinical application, we established a Web-based server for tumor tissue origin diagnosis (http://ibi. zju.e
du.cn/todcup/).

Key words: cancer of unknown primary (CUP); tissue origin diagnosis; RNA-seq; gene expression rank; majority vote
algorithm

Yifei Shen is a researcher of the Department of Medical Oncology, First Affiliated Hospital, Zhejiang University and the Department of Bioinformatics and
Computational Biology, The University of Texas MD Anderson Cancer Center, USA.
Qinjie Chu is a researcher of the Institute of Bioinformatics, Zhejiang University, China.
Xinxin Yin is a graduate student of the Institute of Bioinformatics, Zhejiang University, China.
Yinjun Hu is a researcher of the College of Medicine, Zhejiang University, China.
Panpan Bai is a graduate student of the Institute of Bioinformatics, Zhejiang University, China.
Yunfei Wang is a part of Zhejiang Sheng Ting Biotechnology Co., China.
Weijia Fang is an associate professor of the Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, China.
Michael P. Timko is a professor of the Department of Biology & Public Health Sciences, University of Virginia, USA.
Longjiang Fan is a professor of the Department of Medical Oncology, First Affiliated Hospital and Institute of Bioinformatics, Zhejiang University, China.
Weiqin Jiang is an associate professor of the Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, China.
Submitted: 8 December 2019; Received (in revised form): 19 January 2020

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article-abstract/doi/10.1093/bib/bbaa031/5817479 by Zhejiang U

niversity user on 11 April 2020

https://academic.oup.com/
http://ibi
zju.edu.cn
zju.edu.cn


2 Shen et al.

Table 1. Summary of the method for TOD-CUP

Method Cancer type
number

Sample number Accuracy (%) Data type Public available Reference

Varadhachary et al. (2008) 6 120 87 RNA No [11]
Talantov et al. (2006) 6 205 78 RNA No [12]
Ma et al. (2006) 32 119 82 RNA No [13]
Tothill et al. (2005) 13 229 89 RNA No [14]
Jiang et al. (2018) 3 589 95 RNA No [15]
Rosenfeld et al. (2008) 22 400 90 miRNA No [16]
Morgan et al. (2016) 38 10 481 97 Methylation No [17]
Penson et al. (2019) 22 7791 74 DNA No [18]
TOD-CUP 24 10 553 97 RNA YES This study

Introduction
Cancer of unknown primary (CUP) is a diagnosis given by
clinicians when malignant (cancer) cells/tumors are found in the
body, but the site of origin is not known on presentation. As such,
CUPs represent a heterogeneous group of cancers constituting
3–5% of all human malignancies with an annual incidence of
approximately 7–12 per 100 000 [1, 2]. Without the ability to make
a definitive tissue origin diagnosis, tissue-specific first-line ther-
apy cannot be applied, and the prognosis of patients with CUP
is often poor with a median overall survival of 6 months even
when empiric combination chemotherapy is administered [3, 4].
Recently, next-generation sequencing technology has facilitated
the use of biomarker-based personalized therapy for CUP [5, 6].
However, even targeted therapy requires the knowledge of tissue
origin of cancer, for example the same BRAF inhibitor has
different efficacy for patients with BRAF mutation in melanoma
and colorectal cancer [7, 8]. Hence, tissue origin diagnosis
and genetic mutation analysis are the same importance for
precision medicine of tumor, and CUP remains a dilemma
that generates frustration among pathologists, oncologists and
surgeons and undoes the levels of uncertainty and stress on
patients [9].

Current clinical practice for patients with CUP involves
detailed physical examination, laboratory testing, digital imag-
ing and endoscopic examination, but even the most experienced
physicians using the most advanced (immumo) histological and
imaging technologies can only identify the primary site in 20–
30% of patients with CUP [10]. Even in these cases, the results
can be highly subjective. Clearly, there is a clinical need for better
and more accurate identification of the primary site of tumors.

With the increased availability to acquire high-throughput
genomic and transcriptomic data, a large number of biomark-
ers based on differential gene expression have been identi-
fied and used in the tissue origin identification of CUP. Such
studies have utilized anywhere from tens to hundreds of dif-
ferentially expressed genes to classify different tumor types
(Table 1). For example, Varadhachary et al. [11] and Talantov
et al. [12] used reverse transcriptase-polymerase chain reaction-
based methods employing 10 genes to classify 6 cancer types.
Ma et al. [13] used a 92 gene set to identify the tissue origin
of 32 cancer types, and Tothill et al. [14] developed a panel of
79 genes to classify 13 cancer types. At the higher end of the
spectrum, Jiang et al. [15] developed a naïve Bayes algorithm
based on ∼1000 genes in the hepatobiliary and pancreatic sys-
tem for tissue origin diagnosis. Rosenfeld et al. [16], Morgan
et al. [17] and Penson et al. [18] analyzed microRNA expression,
DNA methylation and DNA sequence data to classify tumor
samples.

Although previous studies have developed multiple diag-
nostic methods for gene expression-based tumor-type clas-
sification, few methods could be widely applied to identify
the primary site successfully. Because of the batch effects
and differences in the nature of the data acquired by RNA-
seq- and microarray-based methodologies, the predictive
ability of biomarkers based on gene expression profiles often
decreased greatly in interlaboratory validation. As far as we
known, there are still no methodologies or computational
programs (software) publicly available that could accurately
predict the tissue origin of CUP. To address this need, we
developed an innovative gene expression rank-based algo-
rithm for tissue origin diagnosis for CUP (TOD-CUP). We also
established the first publicly available Web-based server to
assist clinicians and other interested parties in tumor origin
diagnosis.

Materials and Methods
Training data set: The Cancer Genome Atlas RNA-seq
data

The publicly available RNA-seq cancer data sets of different
cancer types were downloaded from The Cancer Genome Atlas
(TCGA) database [19]. We reclassified and filtered some sam-
ples based on required strategies for clinical treatment. We
combined the stomach adenocarcinoma and esophageal ade-
nocarcinoma into esophagogastric adenocarcinoma cancer type
(a combined total of 486 samples, Figure 1A) since they share
similar pathology and clinical treatment types, and esophageal
squamous carcinoma (83 samples, Figure 1A) were defined as
a new cancer type for the therapy of esophageal squamous
carcinoma separate from that of esophagogastric adenocarci-
noma. For the same reason, intrahepatic cholangiocarcinoma
and hilar cholangiocarcinoma were combined into cholangiocar-
cinoma, and liver cancer only consisted of hepatocellular car-
cinoma (HCC). Most cases of leukemia, brain tumor, retinoblas-
toma and osteocarcinoma can be correctly diagnosed in pathol-
ogy using immunohistochemistry; therefore, these four cancer
types, which also have information collected by TCGA, were
not included in this study. Samples without effective clinical
information were not included in our training data. For example,
there are 47 skin samples and 12 uterus samples without clinical
diagnosis information that were not included in our training
data. In total, 10 553 TCGA RNA-seq samples originating from
24 cancer types were utilized in our work. Detailed information
on the number of samples of each cancer type can be found
in Figure 1A and Supplementary Table S1, available online at
https://academic.oup.com/bib.
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Figure 1. The training RNA-seq data set and the TOD-CUP algorithm. A. The training data (TCGA) of 24 cancer type and sample number used in this study.

Adenocarcinoma: esophagogastric adenocarcinoma. B. The TOD-CUP algorithm (Step 1–2) and validation for inferring origin of CUP (Step 3).

External validation data: public microarray data

To validate the accuracy and robustness of our algorithm across
different platforms, we downloaded RNA-seq and microarray
data sets from different projects employing different sequencing
platforms for external validation. These are as follows: 1029
TCGA Agilent microarray platform-generated samples; 347
Affymetrix microarray platform-generated samples; 1788
Illumina microarray platform-generated samples from the
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) project; and 133 metastatic cancer RNA-seq samples
(Table 2).

Among the external validation microarray samples are breast
cancer data set 1 [20] that includes 86 breast cancer samples gen-
erated by the Affymetrix GPL96 platform; breast cancer data set
2 that includes 1904 breast cancer samples from the METABRIC
project [21] generated by the Illumina HumanHT-12 platform; a
colorectal cancer data set [22] of 192 colorectal cancer samples
generated by the Affymetrix GPL570 platform; a liver cancer
data set of 64 liver cancer samples generated by the Affymetrix
GPL13158 platform; and a thyroid cancer data set [23] of 31
thyroid cancer samples generated by the Affymetrix GPL570
platform.

External validation data: public metastatic cancer
RNA-seq data

Among the metastatic cancer RNA-seq samples used for exter-
nal validation are the following: metastatic breast cancer data

set 1 [24] containing 78 Korean breast cancer samples generated
by the Illumina HiSeq 2000 platform; breast cancer data set
2 [25] which included three matched primary, two nodal and
three liver metastatic breast tumor samples generated by the
Illumina HiSeq 2000 platform; the liver cancer data set [26]
which included 10 Chinese liver cancer samples generated by
the Illumina HiSeq 2000 platform; the skin cancer data set [27]
which included 10 metastatic melanoma cancer samples gen-
erated by the Roche 454 Titanium platform; the kidney cancer
data set [28] of 27 kidney cancer samples generated by the Illu-
mina HiSeq 2500 platform; and the prostate cancer data set [29]
which included eight prostate cancer samples generated by the
Illumina Ovation platform.

Clinical validation data: RNA-seq data of clinical
samples generated internally by this study
A total of 25 formalin-fixed paraffin-embedded (FFPE) well-
characterized clinical patient cancer tissue specimens were
obtained from the First Affiliated Hospital, Zhejiang University
and used for RNA-Seq analysis as part of the clinical validation
of our TOD-CUP algorithm (see Supplementary Table S2 available
online at https://academic.oup.com/bib). Among the 25 cancer
samples, 11 are primary cancer samples (five liver cancers,
three pancreatic cancers, one head-neck cancer, one lung
cancer and one breast cancer). Among the 25 cancer samples,
14 are metastatic cancer samples including six metastatic
colorectal cancer samples in the liver, two metastatic colorectal
cancer samples in the lung, three metastatic breast cancer
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Table 2. External validation data sets generated by microarray (1029 TCGA samples, 2277 public samples) and RNA-seq (141 public metastatic
cancer samples, 25 clinical samples)

Data type Cancer type Number Data platform Platform company Study accession Reference

TCGA microarray data Breast 588 G450A Agilent TCGA Weinstein et al. [19]
Colorectal 244
Kidney 85
Lung 112

Total: 1029
Microarray data sets Breast 1 86 GPL96 Affymetrix GSE25011 Hatzis et al. [20]

Colorectal 192 GPL570 Affymetrix GSE21510 Tsukamoto et al. [22]
Liver 64 GPL13158 Affymetrix GSE116174 Unpublished (2018)
Thyroid 31 GPL570 Affymetrix GSE3467 He et al. [23]
Breast 2 1904 HuamanHT-12 Illumina METABRIC Curtis et al. [21]

Total:2277
Metastatic cancer
RNA-seq data sets

Breast 1 78 HiSeq 2000 Illumina ERP010142 Lee et al. [24]
Liver 10 HiSeq 2000 Illumina SRP058626 Zhang et al. [26]
Kidney 27 HiSeq 2500 Illumina SRP069243 Sciacovelli et al. [28]
Prostate 8 Ovation Illumina SRP029603 Sowalsky et al. [29]
Breast 2 8 HiSeq 2000 Illumina SRP043470 McBryan et al. [25]
Skin 10 454 Titanium Roche SRP003173 Valsesia et al. [27]

Total: 141
Clinical samples Liver 5 HiSeq 4000 Illumina Jiang et al. [15]

Pancreas 3
Metastatic
colorectal in liver

6

Lung 1 This study
Head_neck 1
Breast 1
Metastatic
colorectal in lung

2

Metastatic breast
in liver

3

Metastatic liver
in lung

2

Metastatic lung
in adrenal gland

1

Total: 25

samples in the liver, two metastatic liver cancer samples in
the lung and one metastatic lung cancer samples in the adrenal
gland (Table 2). Three trained histopathologists reviewed and
evaluated the proportion of cancer cells to confirm the tumor
cell content when possible. Total RNAs were isolated from
each of the samples and used to generate pair-end sequence
reads on Illumina HiSeq 4000 platform. MapSplice was used to
map RNA-Seq reads to the human reference genome (hg19).
RSEM was used to quantify gene expression level. This study
was approved by the Research Ethical Committee of the First
Affiliated Hospital, College of Medicine, Zhejiang University
(Reference Number: 2018-999-1), and patients provided written
informed consent to have their information used in the study.

The TOD-CUP algorithm

Top scoring pairs (TSP) classifier was introduced by Geman
et al. [30] for the classification of gene expression data based
entirely on relative gene expression values, specifically pairwise
comparisons between two gene expression levels. In essence, the
program exploits discriminating information contained in the R
matrix by focusing on “marker gene pairs” (i, j), for which there
is a significant difference in the probability of the event across
the N samples from class C1 to C2. The quantities of interest are
pij (Cm) = Prob (Ri < Rj | Y = Cm), m = {1, 2}. These probabilities are

estimated by the relative frequencies of occurrences of Ri < Rj
within profiles and over samples. Letting �ij denote the “score”
of the gene pair (i, j), where �ij = |pij(C1) − pij(C2)|, the method
computes the score �ij for every pair of genes i, j ∈{1, . . . , P}, i �= j.
Pairs of genes with high scores are viewed as most informative
for classification. For each top-scoring gene pair (i, j), the method
computes the “average rank difference” γ ij in class Cm, defined as

γij (Cm) =
∑

n∈Cm

(
Ri,n − Rj,n

)

|Cm| , m = {1, 2} .

Based on the original TSP algorithm, k-TSP, an ensemble
method uses K pairs of genes for classifying gene expression
data [31]. When k = 1, this algorithm, referred to simply as TSP,
necessarily selects a unique pair of genes. More generally, both
TSP and k-TSP may be seen as special cases of a new classifica-
tion methodology based on the concept of “relative expression
reversals.”

However, both TSP and k-TSP are designed for binary clas-
sification problems. Therefore, in this study, we developed a
weighted ensemble k-TSP algorithm for multiclass classification
in TOD-CUP across 24 cancer types. Three steps were included in
the TOD-CUP algorithm-based analysis for identifying the clonal
origin of the tumor samples (Figure 1B).
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Step 1: identification of biomarker genes based on RNA-seq data

We first selected the top 5000 most informative genes measured
by median absolute deviation (MAD) to generate a data set
including the variable genes. We identified the biomarker genes
for each cancer type based on a “one-versus-others approach.”
Given multiple cancer types T = {T1, T2, . . . , Tx}, the one-versus-
others approach decomposes the original problem into a set
of M two-class problems. For each cancer type x = 1, . . . , X, we
trained the classifier and identified the top score gene pairs as
the biomarker genes based on k-TSP method for distinguishing
between the individual cancer type Tx and the composite cancer
types consisting of all other classes. To select the number of
pairs, we measured the accuracy on the training set by calcu-
lating the area under the receiver operating characteristic curve
(AUC) for each possible number of pairs K.

To evaluate the performance of the biomarker genes in each
cancer type, the samples were then divided into 10 randomly
generated subsets, each with an equal proportion of samples of
the cancer type of interest. A 10-fold cross-validation was used to
train the algorithm on 9-fold and test it on the remaining 1-fold.
The selected biomarker gene pairs were used to train classifier.
For each sample, the predicted primary site of the tumor was
compared with the reference diagnosis. A true-positive result
was indicated when the predicted tumor type matched the ref-
erence diagnosis. When the predicted tumor type and reference
diagnosis did not match, the specimen was considered a false
positive. For each cancer type, recall was defined as the ratio
of true positive/(true positive + false negative), while precision
was defined as the ratio of true positive/(true positive + false
positive).

Step 2: multiclass classification of cancer samples

A weighted ensemble learning method was developed for
extending binary to multiclass cancer type classification. A
binary cancer type classifier is constructed for each distinct
pair of classes cancer type Tx, Ty ∈ T, Tx �= Ty, using only the
training samples for those cancer types. Consequently, this
approach generates X(X − 1)/2 binary cancer type classifiers
(X = 24) (Figure 1B). We used all of the identified genes in Step
1, after removing the redundant ones, to train each classifier.
In this scheme, the cancer type classifiers were combined by
weighted voting which is based on the score from the prediction
results of each classifier. To calculate the weighted score, we
combined the votes of individual TSPs contained in each k-TSP
classifier. We aggregated the individual TSP votes and computed
a final consensus of all TSP votes based on specific combination
rules. The consensus is the count of the votes taking into
account the order of the features in each TSP. And the score
were further used in the weighted majority voting method
of each cancer type. Finally, for each sample, we obtained a
score of each cancer type. To further increase the precision of
the method, the final prediction results (Pf) have three states
(Figure 1B). If the highest score among all the cancer type is
lower than an unknown-cutoff-score (0.6), the result is placed in
the “unknown” category (see Supplementary Table S3 available
online at https://academic.oup.com/bib). The unknown-cutoff-
score was used to exclude the prediction results which were
not reliable enough. To determine the unknown-cutoff-score,
we calculated the number of “unknown” sample in different
corresponding the unknown-cutoff-score from 0 to 1 based on
TCGA RNA-seq cancer data sets (see Supplementary Table S3
available online at https://academic.oup.com/bib). Because all
the TCGA samples are well-characterized in tissue type, based

on the results, we selected the unknown-cutoff-score as 0.6
to minimize the unknown sample number which had well-
characterized tissue origin. If the highest score was closer than
a two-cancer-type-cutoff-score (0.05) with the second highest
score, the result is placed into the “two-cancer-type candidates”
category (see Supplementary Table S4 and Supplementary Figure
S1 available online at https://academic.oup.com/bib). The two-
cancer-type-cutoff-score was used to avoid the misclassification
between the top two candidate cancer types among the
prediction results. To determine the two-cancer-type-cutoff-
score, we calculated the number of “two-cancer-type” sample
and TOD-CUP method precision in different corresponding
the two-cancer-type-cutoff-scores based on TCGA RNA-seq
cancer data sets (see Supplementary Table S4 available online at
https://academic.oup.com/bib). Based on the results, the method
had the highest increased precision level when the two-cancer-
type-cutoff-score was 0.05. Finally, if the highest score is greater
than 0.6 and 0.05 higher than the second score, the final result is
the cancer type that has the highest score among all the cancer
types. We then used the curated TOD-CUP algorithm to classify
each sample among all the TCGA samples separately for internal
validation.

Step 3: independent validation based on RNA-seq
and microarray data

To evaluate the precision and robustness of our TOD-CUP algo-
rithm, we used both RNA-seq and microarray data sets to per-
form the validation analysis. The microarray data used in this
analysis were generated from by different groups using different
sequencing platforms, including TCGA data sets (Agilent plat-
form), GEO data sets (Affymetrix Human Genome U133A Array
platform) and METABRIC data sets (Illumina bead chip platform)
(Table 2).

The RNA-seq data of clinical samples used in this analysis
were generated by our group, which included both primary and
metastatic cancers.

Statistical analysis

We used a class-proportional random predictor to determine
the number of correct classifications that would be expected
by chance for multiclass prediction. For the permutation tests,
1000 permutations were performed on the data set. Associated P
values were calculated based on the likelihood that the observed
classification accuracy could be arrived at by chance [32]. In
the previous studies, three schemes have been used to extend
binary classifier TSP to multiclass classifiers [one-versus-one,
one-versus-others and hierarchical classification (HC) schemes]
[31]. The results showed that the HC-k-TSP performed best out
of all three schemes [31]. To further compare the performance
between the TOD-CUP algorithm and the HC-k-TSP in multiclass
problems, we performed the classification analysis based on
the HC-k-TSP using all the TCGA data. In brief, the HC k-TSP
scheme is a sequential procedure in which a binary classifier is
associated with each internal node of a binary decision tree and
a class label is assigned to each leaf of the tree. The classifier c1 at
the root is designed to distinguish between the largest class and
the other classes combined (“composite class 1”); it is trained
using all of the training samples. If c1 chooses the largest class,
the procedure terminates and this becomes the final prediction.
Otherwise, if c1 chooses composite class 1, the second classifier,
c2, is applied, which is dedicated to separating the second largest
class from “composite class 2,” consisting of all classes combined

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article-abstract/doi/10.1093/bib/bbaa031/5817479 by Zhejiang U

niversity user on 11 April 2020

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbaa031/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbaa031/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbaa031/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbaa031/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbaa031/-/DC1


6 Shen et al.

except the largest and second largest; c2 is trained from all
examples whose class labels belong to composite class 1. This
procedure iterates until all the leaves in the decision-tree are
labeled with a unique class.

Software implementation and Website development

TOD-CUP was developed within a Web framework with its back-
end based on R and PHP and is hosted at http://ibi.zju.edu.cn/to
dcup/. This Web framework minimizes inherent dependencies
on specific hardware, software packages and libraries, and file-
system attributes. Users are provided with a detailed application
guide that includes several step-by-step tutorials.

Results
Summary of RNA-seq and microarray data used
in this study

Publicly available RNA-seq data from 10 553 samples were
obtained from TCGA for this study (Table 2). To further validate
the accuracy and robustness of our method across different
sequencing and analytical platforms, we also downloaded
RNA-seq and microarray data sets from different projects
and platforms for external validation. This included 1029
Agilent microarray platform generated samples from TCGA,
347 Affymetrix microarray platform generated samples, 1788
METABRIC Illumina microarray platform generated samples and
133 metastatic cancer RNA-seq samples. In addition, a total of 25
cancer samples (11 primary cancer samples and 14 metastatic
cancer samples) were obtained and de novo sequenced in this
study (Table 2).

Development and performance evaluation
of the TOD-CUP algorithm

To select the most informative genes for classification detection,
a data set of containing the top 5000 most variably expressed
genes as measured by MAD was initially created (Figure 1).
We then identified the biomarker genes for each of the 24
cancer types based on the one-versus-others approach. Given
multiple cancer types T = {T1, T2, . . . , Tx}, for each cancer
type x = 1, . . . , X, we trained the classifier and identified
the top scoring gene pairs based on k-TSP method between
individual cancer type Tx and the composite samples of all other
cancer types. We identified between 8 and 40 biomarker genes
from each cancer type (see Supplementary Table S5 available
online at https://academic.oup.com/bib). After removing the
redundant genes, a total of 538 biomarker genes were identified
for inferring the origin of synchronous tumors among 24
cancer types (see Supplementary Table S8 available online at
https://academic.oup.com/bib).

To evaluate the performance of the biomarker genes in each
cancer type, a 10-fold cross-validation method based on k-TSP
method was used to train the algorithm on 9-fold and test it on
the remaining 1-fold (Figure 1B). The accuracy of the biomarker
gene pair-generating computational algorithm was calculated
based on this algorithm for each cancer type. Based on the
results of 10-fold cross validation, 17 cancer types have accuracy
higher than 95% among all the cancer types, and the lung cancer
type has lowest accuracy at 86.7% (see Supplementary Figure S2
available online at https://academic.oup.com/bib).

To accurately identify the tissue origin of each sample among
the 24 different cancer types, we developed a weighted ensemble
learning method for multiclass cancer type classification based

on k-TSP method. This approach generates a binary cancer type
classifier for each pair of cancer types. We used all of the iden-
tified 538 biomarker genes to train each classifier. Among the
24 cancer types, a total of 276 binary classifiers were generated
(Figure 1B). To further improve the accuracy of the method, the
cancer type classifiers were combined by weighted voting based
on the score from the prediction results of each k-TSP classifier.
Finally, for each sample, we obtained a score of each cancer type.
Based on the analysis of the prediction score of each misclas-
sified sample, we found two patterns: (1) misclassified samples
with a very low prediction score, indicating that it was difficult to
classify this sample to any of the current cancer types using our
algorithm and (2) misclassified samples in which the prediction
scores were very close between the highest and second highest
scored cancer type. This latter category accounted for most of
the misclassifications.

To further increase the precision of the method, the final
prediction results (Pf) were used to generate three states
(Figure 1B). First, if the highest score among all the cancer types
is lower than 0.6, the result was placed into the “unknown”
category. Second, if the highest score is very close to the second
highest score (within 0.05 or less than one vote among all
the cancer type), the result belongs to the “two-cancer-type
candidates” category. Finally, if the highest score is greater
than 0.6 and 0.05 higher than the second score, the result is
the cancer type with the highest score among all the cancer
types.

Our analysis above shows that the TOD-CUP algorithm
significantly improved the accuracy of multiclass classifi-
cation. The total accuracy of resolving TOD-CUP increased
from 93.5 to 97.5% compared with a simple majority vote
algorithm (see Supplementary Figure S3 available online at
https://academic.oup.com/bib). The ability to accurately predict
16 cancer types among the 24 cancer types analyzed increased,
and the diagnosis of six cancer types increased more than 5%
(e.g. for bile duct, cervix, adrenal gland, head-neck, bladder and
pancreas) using the TOD-CUP algorithm compared with simple
majority vote algorithm (see Supplementary Figure S3 available
online at https://academic.oup.com/bib).

Using the TOD-CUP algorithm to classify each sample of the
TCGA samples as internal validation, we achieved an average
accuracy in the prediction of cancer type of 97.5%. In seven
cancer types (adenocarcinoma, adrenal gland, nervous system,
prostate, testis, thymus and thyroid), the accuracy was 100%,
and in 11 others (i.e. kidney, skin, ovary, breast, colorectal, liver,
lung, pleura, uterus, pancreas and bladder), it was between 95
and 100%. The recall (i.e. ability to reconfirm prior definition)
was 100% in seven cancer types (esophageal, lymph nodes, ovary,
prostate, testis, thymus and thyroid) and between 95 and 100% in
13 others (colorectal, nervous system, soft tissue, kidney, adrenal
gland, liver, breast, pleura, adenocarcinoma, pancreas, uterus,
bile duct and skin) (Tables 3A and 3B).

We further used a class-proportional random predictor to
determine the number of correct classifications that would be
expected by chance for multiclass prediction. Thousand permu-
tations were performed on the data set of each cancer type,
and the results showed that the prediction accuracy was highly
statistically significant when compared with class-proportional
random prediction (P < 0.001). To further compare the perfor-
mance between the TOD-CUP algorithm and the HC-k-TSP in
multiclass problems. Among the total 10 553 TCGA cancer sam-
ples, 8545 (81.0%) samples were corrected classified by the HC-
k-TSP algorithm (see Supplementary Table S6 available online
at https://academic.oup.com/bib), which is much lower than
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Table 3A. The multiclassification results of 24 cancer types by the TOD-CUP algorithm based on TCGA RNA-seq data: the precision and recall
of each cancer type in multiclassification results

Cancer type Precision (%) Recall (%)

Adenocarcinoma 100.0 97.1
Adrenal_gland 100.0 98.7
Bile_duct 88.6 97.7
Bladder 96.3 91.5
Breast 99.6 97.8
Cervix 89.1 95.4
Colorectal 98.9 99.5
Esophageal 92.2 100.0
Head_neck 87.9 95.6
Kidney 99.8 98.8
Liver 98.9 98.0
Lung 98.9 94.1
Lymph_nodes 88.7 100.0
Nervous_system 100.0 99.3
Ovary 99.7 100.0
Pancreas 96.5 97.1
Pleura 98.7 97.5
Prostate 100.0 100.0
Skin 99.7 96.6
Soft_Tissue 75.8 98.9
Testis 100.0 100.0
Thymus 100.0 100.0
Thyroid 100.0 100.0
Uterus 97.6 97.1

Table 3B. The multiclassification results of 24 cancer types by the TOD-CUP algorithm based on TCGA RNA-seq data: the confusion matrix of
multiclassification of 24 cancer types
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Adenocarcinoma 435
Adrenal_gland 77
Bile_duct 31 4
Bladder 339 1 4 6 2
Breast 1139 3 1 1
Cervix 5 6 221 12 4
Colorectal 3 1 2 642 1
Esophageal 7 83
Head_neck 15 1 1 449 42 3
Kidney 1006 1 1
Liver 1 357 2 1
Lung 1 2 4 872 1 2
Lymph_nodes 1 1 1 47 1 2
Nervous_system 837
Ovary 1 355
Pancreas 2 4 165
Pleura 1 76
Prostate 551
Skin 388 1
Soft_Tissue 1 14 17 2 1 3 7 4 2 6 1 1 9 257 14
Testis 127
Thymus 121
Thyroid 561
Uterus 9 1 3 1 569
Two-cancer-type 37 1 11 57 28 69 5 73 3 42 205 6 3 4 2 12 3 1 30
Unknown 2 2
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Figure 2. Prediction accuracy of samples within external validation data sets (TCGA and other microarray data sets, metastatic cancer RNA-seq data sets). Bubble size

corresponds to the percentage of samples from the cohort predicted to have a given cancer type. (x-axis: the cancer cohort of external validation data sets; y-axis: the

predicted cancer types).

the TOD-CUP method (97.5%). The results showed that the HC-
k-TSP algorithm was highly accurate (>95%) in prediction in
some cancer types (e.g. breast, colorectal, kidney, liver, lung,
nervous_system, prostate and thyroid) but had very low accu-
racy (<50%) in other cancer types (Adenocarcinoma, bile_duct,
bladder, cervix, esophageal, head_neck and ovary). The TOD-
CUP algorithm had better performance than the HC-k-TSP in the
tissue origin prediction for the 24 cancer types.

External validation of the TOD-CUP algorithm:
microarray data sets

To assess the potential clinical performance of the TOD-CUP
algorithm, we carried out an external validation using two main
microarray data sets. The first set is TCGA microarray gene
expression data derived from the same samples used to generate
the TCGA RNA-seq data sets but obtained using microarray
technology. This data set serves to evaluate the robustness of
TOD-CUP algorithm in analyzing microarray data types. The
second data set is microarray data from tumor samples of differ-
ent cancer types generated using different expression profiling
platforms in several different research projects. This second data
set is used to validate the ability of the TOD-CUP algorithm to
handle varied data input types.

Four main cancer types were included in TCGA microarray
data set, including 588 breast cancer samples, 244 colorectal
cancer samples, 85 kidney cancer samples and 112 lung can-
cer samples. All TCGA microarray data were generated by Agi-
lent G450A platform. The accuracy of tissue origin diagnoses in

breast, colorectal, kidney and lung cancer was 90.3, 99.6, 98.8 and
86.6%, respectively (Figure 2).

In addition, for the validation of the TOD-CUP algorithm, we
analyzed a curated data set that included four cancer types ana-
lyzed on four different microarray platforms (Figure 2). The first
breast cancer data set [20] included 86 breast cancer samples
generated by the Affymetrix GPL96 platform. We were able to
correctly predict cancer cell types in 78/86 samples (90.7% accu-
racy). In the second breast cancer data set (i.e. 1904 breast cancer
samples from METABRIC project [21] generated by the Illumina
HumanHT-12 platform), we predicted 1788/1904 as breast cancer
type and 21 as two-cancer-type. Upon further investigation, of
the 21 two-cancer-type, all had breast cancer type as the first
or second ranked classification among all the cancer types. The
total accuracy of prediction in the METABRIC data set is 95.0%.
The colorectal cancer data set [22], which included 192 colorectal
cancer samples generated by the Affymetrix GPL570 platform,
yielded 180/192 correctly predicted colorectal cancer type clas-
sifications for a total accuracy of 94.8%. This data set had two
samples predicted as two-cancer-type classifications of which
both samples had the colorectal cancer type as the highest
predicted score among all the cancer types. The liver cancer
data set which included 64 liver cancer samples generated by
the Affymetrix GPL13158 platform gave 58/64 correctly predicted
liver cancer type classifications (93.8% total accuracy) and two
samples as two-cancer-type classifications. The thyroid cancer
data set [23] (a group of 31 thyroid cancer samples generated
by the Affymetrix GPL570 platform) had all samples correctly
predicted as thyroid cancer types (100% accuracy).
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External validation of the TOD-CUP algorithm:
metastatic cancer RNA-seq data sets

To further evaluate the performance of the TOD-CUP algorithm
for tissue of origin diagnosis of the metastatic cancer, we
curated an RNA-seq data set of metastatic cancer tumor samples
from five different cancer types (breast, skin, kidney, liver and
prostate) (Figure 2). Four sequencing platforms (Illumina HiSeq
2000, Illumina Hiseq 2500, Illumina Ovation and Roche 454
Titanium) were used to generate these data. In the two breast
cancer data sets, one used biopsies samples and the other FFPE
samples.

Metastatic breast cancer data set 1 [24] generated by the
Illumina HiSeq 2000 platform included 78 Korea breast can-
cer samples. The TOD-CUP algorithm correctly predicted 73/78
(97.4%) samples as breast cancer type and three samples as two-
cancer-type. Metastatic breast cancer data set 2 [25] included
three matched primary, two nodal and three liver metastatic
breast tumor samples generated by the Illumina HiSeq 2000 plat-
form. All eight primary and metastatic samples were predicted
correctly. The liver cancer data set [26] generated by the Illumina
HiSeq 2000 platform was comprised of 10 Chinese liver cancer
samples with venous metastases of HCC. All 10 liver cancer
samples were correctly predicted. The 10 metastatic melanoma
cancer samples, generated by the Roche 454 Titanium platform,
comprising the skin cancer data set [27] were also all correctly
predicted as skin cancer type. The kidney cancer data set [28],
generated by the Illumina HiSeq 2500 platform, contained 27
kidney cancer samples taken from patients with HLRCC (hered-
itary leiomyomatosis and renal cell cancer) metastatsis to the
mediastinum. Here, 25/27 (92.6%) of the samples were correctly
predicted as kidney cancer data type, with the other two samples
classified as unknown cancer type because of the low predicted
score. The prostate cancer data set [29] which was generated
by the Illumina Ovation platform and included eight prostate
cancer samples obtained from the posterior iliac crest was 87.5%
accurate with 7/8 samples correctly predicted as prostate cancer
data type. The lone remaining sample was classified as unknown
cancer type because of the low predicted score.

Clinical samples validation of the TOD-CUP algorithm

We further used primary and metastatic cancer samples
obtained from clinical patients for tissue clonal origins iden-
tification in the general Chinese population using TOD-CUP
algorithm. For the primary cancers, we generated transcriptomic
data from 11 cancer samples (i.e. five liver, three pancreatic and
one each of head-neck, lung and breast cancer samples) (Table 4).
At the same time, we also sequenced the transcriptomes from 14
metastatic cancer samples (including six metastatic colorectal
cancers in the liver, two metastatic colorectal cancers in the
lung, three metastatic breast cancers in the liver, two metastatic
liver cancers in the lung and one metastatic lung cancer in the
adrenal gland). The TOD-CUP algorithm was used to analyze all
the data, including the primary and metastatic cancer samples,
and we calculated the prediction accuracy of our method relative
to the clinically defined cancer type.

Among the 11 primary clinical cancer samples, all of the
TOD-CUP classification results are the same as those in the
clinical diagnosis report. Among the 14 metastatic cancer clinical
samples, 13 of the classification results are identical to that in
the clinical diagnosis report. One metastatic colorectal cancer
in the liver sample was misclassified as a liver cancer type.

Taken together, the overall accuracy of the TOD-CUP algorithm-
based classification was 100% for the 11 primary cancer samples
and 92.9% for metastatic cancer samples. The clinical samples
validation provides strong support that the TOD-CUP algorithm
can accurately identify the tissue origin of CUP using RNA-seq
data.

In summary, using a combination of differential gene expres-
sion data sets derived from different cancer cell types gener-
ated using different experimental methodologies and platforms,
we provide clear and convincing evidence that our TOD-CUP
algorithm is robust and accurate in its ability to yield a tissue
origin diagnosis of the metastatic cancer. Using multiple forms
of microarray and RNA-seq data obtained from primary cancer
samples, as well as metastatic cancer samples, our TOD-CUP
algorithm accurately predicted the tissue origin of tumor in both
general Chinese population samples and those obtained from
individuals of mixed ethnic origins. Importantly, we demon-
strated the excellent performance of the TOD-CUP algorithm in
a range of clinical samples generated using standard methods,
thereby underscoring it broad applicability.

A Web-based TOD-CUP server for tumor tissue origin
diagnosis

To allow the TOD-CUP algorithm for tumor tissue origin diag-
nosis to be easily accessed and readily applied in a broad range
of clinical settings, we developed an online server that is pub-
licly available (http://ibi.zju.edu.cn/todcup/) (Figure 3A). Users
are able to select the types of the data sets (e.g. RNA-seq or
microarray) to be analyzed. They are also able to select the
cancer type(s) they wish to include in their analysis should
they be interested in evaluating a selective range of candidate
cancer types in their test samples. Alternatively, users have the
option of analyzing all 24 cancer types included in the platform
by simply selecting “Select_all_cancer_type” option. The user is
then able to directly upload the gene expression data into the
“Gene expression data input” frame to start analysis (Figure 3B).
To improve accuracy, we recommended that users include all
cancer types in the prediction analysis. However, if users already
know their candidate cancer types, they could directly select
the target cancer types to perform the analysis. For example, if
the tumors were just found in the hepatobiliary and pancreatic
system, the users can select the Bile_duct, Liver and Pancreas as
the candidate cancer types for the prediction. The final cancer
type prediction results will not be influenced by the selected
cancer types.

The results’ report generated by the Web-based TOD-CUP
analysis includes three types of content (Figure 3C). First, the
user will be presented with the biomarker gene number iden-
tified in the cancer sample data among all the 538 genes used in
the TOD-CUP method. Second, the user will be provided the final
diagnostic classification of the tested sample. Three different
outcomes will appear: (i) if the first-ranked cancer type have
a high enough cancer type score and the score is not closed
with the second-ranked cancer type, it will give the first-ranked
cancer type at the results part; (ii) if the first-ranked cancer type
have a high cancer type score but the score is closed with the
second-ranked cancer type, it will give the “two-cancer-type”
results like “first-ranked cancer type, but can’t exclude second-
ranked cancer type”; and (iii) if the first-ranked cancer type have
a very low cancer type score, it will give the “unknown” results
like “first-ranked cancer type, but need further examination.”
Although it will also report the cancer type which had highest
cancer type score, the results will not be credible in this case.
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Table 4. Clinical samples’ validation of the TOD-CUP based on RNA-seq data sets. A. Clinical samples’ validation of the TOD-CUP based on
primary cancer samples. B. Clinical samples’ validation of the TOD-CUP based on metastatic cancer samples

A. Primary cancer samples

Patient ID Tissue origin of primary cancer Predicted cancer type Results

P1 Liver Liver √
P2 Liver Liver √
P3 Liver Liver √
P4 Liver Liver √
P5 Liver Liver √
P6 Pancreas Pancreas √
P7 Pancreas Pancreas √
P8 Pancreas Pancreas √
P9 Lung Lung √
P10 Head_neck Head_neck √
P11 Breast Breast √

B. Metastatic cancer samples

Patient ID Tissue origin of
metastatic cancer

Tissue of samples
collected from

Predicted cancer type Results

M1 Colorectal Liver Colorectal √
M2 Colorectal Liver Colorectal √
M3 Colorectal Liver Colorectal √
M4 Colorectal Liver Colorectal √
M5 Colorectal Liver Colorectal √
M6 Colorectal Liver Liver ×
M7 Colorectal Lung Colorectal √
M8 Colorectal Lung Colorectal √
M9 Breast Liver Breast √
M10 Breast Liver Breast √
M11 Breast Liver Breast √
M12 Liver Lung Liver √
M13 Liver Lung Liver √
M14 Lung Adrenal gland Lung √

The final information presented to the user will be the predicted
cancer type score of each cancer type of the cancer sample,
ranked from the highest to the lowest and a bar plot to visualize
the cancer type score results. An example report resulting from a
TOD-CUP algorithm analysis will also be included in the “About”
section on the Website.

Discussion
In this study, we developed an effective and efficient computa-
tional tool based on gene expression rank to accurately identify
the tissue clonal origin of tumors in 24 cancer types across differ-
ent data types. External validation based on analyzing microar-
ray and transcriptomic data from primary and metastatic cancer
tumor samples, TOD-CUP algorithm has a higher success rate in
predicting the tissue origin of multiple cancer types comparing
with previous studies [11, 13, 14]. Previous studies had shown
that gene expression patterns remain consistent with tissue of
origin, both in cell lines [33] and tumor samples [34–36]. There-
fore, gene expression data may enable an accurate identification
of the tissue origin of a tumor, implying that the gene expression
data could be developed into a clinically useful diagnostic test.
The results of Ramaswamy et al.’s study [35] further indicated
that many cancers retain their tissue of origin identity through-
out metastatic evolution, suggesting that gene expression-based

approaches to the diagnosis of clinically problematic metastases
of unknown primary origin [37] are feasible.

The TOD-CUP algorithm also has a good performance
on chemotherapy-treated patient samples. Among the TCGA
samples, there are 69 chemotherapy-treated samples (0.65% of
the total 10 553 samples) which included skin, bladder, kidney,
head-neck, breast, lung, thyroid, colorectal and nervous system
cancer samples (see Supplementary Table S7 available online
at https://academic.oup.com/bib). In the 69 chemotherapy
samples, 68 (68/69, 98.55%) samples were corrected predicted
by TOD-CUP algorithm and only one lung cancer sample was
misclassified as soft tissue cancer type. The results suggested
that the chemotherapy-treated samples might also share the
same transcriptional characteristics with the untreated samples.
Therefore, the chemotherapy treatments have limited effect on
the prediction performance of the TOD-CUP algorithm.

The TOD-CUP algorithm is based on the gene expression rank
in samples making the method less platform-specific and less
sample-type limited. We used massive tissue-specific RNA-seq
data from TCGA as the training data to identify 538 feature genes
across 24 cancer types. The results of the external validation
employing 3306 microarray data sets clearly demonstrates that
the classifier trained by TCGA RNA-seq data sets accurately
predicts the tissue origin of tumor samples data from both RNA-
seq and microarray data types. In other words, compared with
previous methods based on gene expression signatures [11–15],
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Figure 3. The TOD-CUP Web-based analysis server for tumor tissue origin diagnosis. A. The home page of TOD-CUP Web server. B. The analysis page of TOD-

CUP Web server. (1) Select data types which need to be analyzed, i.e. microarray or RNA-seq data. (2) Select cancer types which you are interested in. If option

“Select_all_cancer_type” is selected, the analysis will include all the 24 cancer types. (3) Upload the gene expression data into the “Gene expression data input” frame

to start analysis. C. The diagnosis results of TOD-CUP. (1) The biomarker gene number found in the cancer sample data. (2) The diagnosis results of the sample. (3) The

cancer type score of each cancer type.

our algorithm, which employs gene expression rank informa-
tion, more accurately identifies the tissue origin of cancers and
is independent of the batch effect and data types effects of other
methods.

In addition, to further increase the precision of our approach,
we introduced two categories (“unknown” and “two cancer
types”) to represent samples that cannot be classified into
any of the 24 cancer types. The use of “Two cancer types” as a
classification significantly increased the precision of prediction
for many cancer types including bile-duct, bladder, cervix and
head-neck types. After further investigation, we found that
the bladder, cervix, head-neck and lung cancer types were all
related to squamous-cell carcinoma, which could be a reason
underlying misclassification among these cancer types. The
similarity of tissue origin might also be the cause for difficulty
in classification between liver and bile duct cancer types. As
constructed, the TOD-CUP algorithm can accurately decide
whether to give a definitive result or to remain ambiguous in
distinguishing between two top-ranked candidate cancer types
to avoid giving misleading diagnosis in the analysis.

Most of the cancer samples used in our study as the training
data set and as the external validation of the accuracy of our
computational method were obtained from public databases,

which are largely taken from western populations of mixed
ethnicity. To ensure the broadest applicability and accuracy of
our algorithm, rather than simply rely on these data, we also
sequenced 25 cancer samples (11 primary cancer samples and
14 metastatic cancer samples) specifically from individuals of
Chinese ethnicity collected locally. The accuracy of our method
was high regardless of the (known or unknown) ethnic origin of
the individual from which the sample was derived.

While it is difficult to know exactly what leads to misclas-
sification in our analysis, we were able to gain some insights
specifically on this matter in our analysis of the cancer sam-
ples collected locally. The results suggested that based on our
algorithm, the accuracy for the tissue origin of the cancer sam-
ples was higher than 96%. All of the samples obtained were
derived from histologically confirmed origin in six cancer types.
However, one of the 14 clinical metastatic cancer samples with
histologically confirmed origin failed to be identified correctly in
our study. It was a liver metastatic colon cancer sample which
was misjudged as liver cancer. It is likely that normal liver
tissue contamination in the bulk sample might relate with the
incorrect classification for this sample. Additionally, another five
of the six liver metastatic colorectal cancer samples were all
accurately classified as colorectal cancer type, suggesting that
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our algorithm had high cancer specificity and could conquer the
problem of the influence of carcinoma adjacent tissues. To avoid
the influence of the normal tissue to the prediction results, it
is recommended to use some software, such as “estimate” [38],
to infer the tumor purity of each sample before performing the
prediction analysis. We will address the problem for low tumor
purity samples in our future work. In addition, the development
of novel liquid biopsy methods could help to detect extremely
low circulating cancer cells in the blood of patients [39–43].
Anyway, any new experimental technologies will be helpful for
us to find new computational methods to detect accurately the
tissue origin of metastatic cancers.

Despite the low rate of false predictions (∼2.5%) presently
obtained with using the TOD-CUP algorithm, we strongly feel
that the method offers a beneficial and easily applied alternative
to pathology alone to assist clinicians identify tumor origins
more objectively and precisely. Thus, the combination of his-
tology and gene expression-based technologies offers the best
case scenario for providing patents diagnosed with CUP, the best
possible information for personalized treatment.

Key Points
• A gene expression rank-based majority vote algorithm

was developed for the tissue origin diagnosis of can-
cers of unknown primary (TOD-CUP) of most common
cancer types.

• The TOD-CUP algorithm provides a powerful and
robust means to accurately identify the tissue origin
of 24 cancer types across different data platforms.

• The TOD-CUP algorithm could be easily accessible for
clinical application through a Web-based server for
tumor tissue origin diagnosis (http://ibi.zju.edu.cn/to
dcup/).

Supplementary data

Supplementary data mentioned in the text are available to
subscribers in BIOLRE online.
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